

ONCOseeker™ HS Quick Guide

Preparation for Assay

- · Before starting, spin down all reagents briefly to collect components clinging under the lid and keep them on ice until ready for use.
- . In the case of frozen reagents, they are fully thawed and mixed using a vortex mixer. Briefly spin down and keep on ice until ready for use.
- AMPure XP beads & Streptavidin beads must be sufficiently vortexed before use. It should appear homogenous and consistent in color.
- The 80% ethanol used for size selection is prepared and used immediately before the washing process.
- · Using a filter tip during all experimental processes is recommended.

Step 1. End repair

1-1) Thermal cycler program	Temperature	Time
(Lid temperature: 70°C)	4 °C	Hold
	20 °C	30 min
	65 °C	30 min
	4 °C	Hold

1-2) Add a DNA sample and each reagent in a 0.2ml PCR tube under the conditions shown in the table below.

Reagent	nt Volume per Sample		ample
	Low EDTA TE	3 µL	
	Buffer E1	4.7 µL	
Master	 Enzyme E2 	1µL	10 µL
Mix	Enzyme E3	1 µL	
	Enzyme E4	0.3 μL	
cfDNA			50 µL
		Total Volume	60 µL

- 1-3) Perform vortex and spin down.
- 1-4) Place the tube in the thermal cycler and advance the program of (Step 1).

Step 2. Adapter Ligation

2-1) Thermal cycler program (Lid temperature: OFF)

Temperature	Time
20 °C	15 min

2-2) Add 29 μ L of the adapter ligation master mix to the End repair sample from (Step 1).

Reagent		Volume per Sa	ample
Master	 Buffer L1 	18 µL	24 uL
Mix	Enzyme L2	yme L2 6 µL	24 μL
(plate) Ful	I-Length Adapter / (UDI-UMI index,	/ each)	5 µL
End Repai	r Sample		60 µL
		Total Volume	89 µL

- 2-3) Perform vortex and spin down.
- 2-4) Place the tube in the thermal cycler and advance the program of (Step 1).

(Optional) Repair of deaminated bases

① Thermal cycler program (Lid temperature: 47°C)

- emperature	Time
37 °C	15 min

② Add 1 µL of UDG to the Adapter ligation sample.

Reagent	Volume per Sample
• UDG	1 µL
Adapter Ligation sample	89 µL
	Total Volume 90 µL

- 3 Perform vortex and spin down
 - $\ensuremath{\mathfrak{G}}$ Place the tube in the thermal cycler and advance the program of (Step 1).

Step 3. Post-Ligation clean-up

3-1) Add 72 $\mu L (0.8 \text{XVolume})$ of AMPure XP beads to 89 μL of adapter ligated DNA and mix 10 times with a pipette.

Adapter ligated	5 min inc		Separation
DNA 72 µL	in room		(2-5 min)
Post-Ligation clean-up product (Step 3)	08 Elution (Low EDTA TE 21 µL)	05 Washing (80% Ethanol 200 uL)	Washing (80% Ethanol 200 p.

Step 4. PCR amplification

4-1) Thermal cycler program (Lid temperature: 105°C)

Temperature	Time	Cycles
98 °C	2 min	1
98 °C	20 sec	
60 °C	30 sec	8-10
72 °C	30 sec	
72 °C	1 min	1
4 °C	Hold	Hold

ONCOseeker™ HS Quick Guide

4-2) Referring to the below, add the index into the ligated DNA and add the PCR Master Mix 25 µL to each sample tube.

Reagent Volume per Sample		ample	
Master PCR Master Mix		25 µL	30 uL
Mix	 Reagent P2 	5 μL	30 μL
Ligation D	NA (purified DNA from Step 3)		20 μL
		Total Volume	50 µL

Step 5. Post-PCR clean-up

5-1) Add 75 µL (1.5Xvolume) of AMPure XP beads to the amplified DNA and mix 10 times with a pipette.

Amplified DNA	5 min inc in room t		Separation (2-5 min)
Post-Ligation clean-up product (Step 5)	Elution (Low EDTA TE 21 µL)	Washing (80% Ethanol 200 µL)	04 Washing (80% Ethanol 200 µL)

- 5-2) Measure the concentration with Qubit 0.4. Fluorometer and check the size using TapeStation or Bioanalyzer.
- 5-3) With the quantitative value measured by the Qubit®4.0 Fluorometer, mix the samples to be pooled in equal amounts to make a library mixture of 500 to 1500 ng in total.

Step 6. Combine blocker Mix, Cot DNA, library, and dry

6-1) Referring to the table below, mix the barcoded library pool of (Step 5), Cot DNA and Mix the Blockers Mix in a DNA LoBind 1.5 mL tube.

Reagent	Volume per Sample
Barcoded library pool	500-1500 ng
Blockers Mix	2 µL
Cot DNA	5 µL

- 6-2) Dry down the mixture using a vacuum concentrator.
- * Keep the temperature of the vacuum concentrator below 70 $^{\circ}\text{C}$

Step 7. Hybridization reaction

7-1) Thermal cycler program (Lid temperature: 100°C)

Temperature	Time
95 °C	30 sec
65 °C	4-16 h
65 °C	Hold

7-2) Prepare the Hybridization Master Mix by referring to the table below.

Reagent Volume per Sar		
○ 2X Hyb Buffer	8.5 µL	
Hyb Buffer Enhancer	2.7 µL	
Target Probe	4 μL	
Nuclease-Free Water	1.8 µL	
	Total Volume 17 ul	

- * Check the tube of 2X Hyb buffer for crystallization. If crystals are present, heat the tube at 65 °C, until the buffer is completely solubilized.
- 7-3) Add 17 μ L of Hybridization Master Mix to the library pool concentra ted from (Step 6), mix by pipetting, and incubated at room temperature for 5-10 minutes.
- 7-4) Perform vortex and spin down. Transfer to a new 0.2 mL PCR tube.
- 7–5) Then incubate the samples in a thermal cycler at 65 $^{\circ}\mathrm{C}$ for 4 to 16 hours.

Step 8. Prepare wash buffers

8-1) 1X working solution diluted with the table.

Reagent	Free Water	Buffer	Total	Storage
O 2X Beads Wash Buffer	160 µL	160 µL	320 µL	RT
10X Wash Buffer 1	252 μL	28 µL	280 μL	110 μL: 65 °C 170 μL: RT
O 10X Wash Buffer 2	144 µL	16 µL	160 µL	RT
10X Wash Buffer 3	144 µL	16 µL	160 µL	RT
0 10X Stringent Wash Buffer	288 µL	32 µL	320 µL	160 µL (2tube) : 65 °C

8-2) Prepare Bead Resuspension Mix by referring to the table below.

Reagent	Volume per Sample
O 2X Hyb Buffer	8.5 µL
Hyb Buffer Enhancer	2.7 μL
Nuclease-Free Water	5.8 µL
	Total Valuma 17 ul

Step 9. Wash streptavidin beads

9-1) Transfer 50 μ L of Streptavidin beads per capture reaction to a 1.5 mL LoBind tube.

Streptavidin beads	Washing (1X Wash Buffer 1 100 µL)	Washing (1X Wash Buffer 1 100 µL)
16	05	04
Washed Streptavidin Bead Resuspension Mix	Elution (Bead Resuspension Mix 17 µL)	Washing (1X Wash Buffer 1 100 µL)

ONCOseeker™ HS Quick Guide

Step 10. Bead capture

10-1) When the HYB program (4-16 h) of (Step 7) is finished, take the tube out of the thermal cycler.

10-2) After taking out the tube, set the thermal cycler under the conditions shown in the table below and immediately start the WASH program. (Lid temperature: 70°C)

Temperature	Time
65 °C	Hold

- 10-3) Add 17 μ L of resuspension mix containing beads from (Step 9) to the tube finished with HYB from (Step 7).
- 10-4) Perform vortex and spin down briefly.
- 10-5) Place the sample into the thermal cycler where the WASH program is running and incubate at 65 °C for 45 minutes.
- 10-6) Every 10-12 minutes, remove the tube from the thermal cycler and gently vortex to ensure the sample is fully resuspended.
- 10-7) At the end of the 45 minutes, take the sample off the thermal cycler. Proceed immediately to Heated washes of (Step 11).

Step 11. Wash

11-1) Heated washes.

- \cdot Add 100 μ L preheated 1X Wash Buffer 1 to the tube from (Step 10), slow the pipette 10 times, and spin down briefly.
- · Carefully pipette to minimize bubble formation.
- · Transfer the beads mixture to a new 1.5 mL LoBind tube.

01 Beads with DNA librari		02 Washing (Preheated 1X Wash Buffer 1 100 µL)	03 Washing (Preheated 1X Stringent Wash Buffer 150 µL)
06 5 min incubation i	n 65 °C	05 Washing (Preheated 1X Stringent Wash Buffer 150 µL)	04 5 min incubation in 65 °C

11-2) Room temperature washes.

 \cdot Add 150 μL of 1X Wash Buffer 1 stored at room temperature.

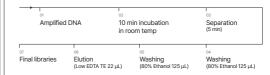
* Do not throw away the beads. 20 μL beads containing captured DNA are used in the Post-capture PCR step.

Step 12. Post-capture PCR

12-1) Transfer the 20 μ L of beads with a captured DNA sample from (Step 11) to a new 0.2 mL PCR tube.

12-2) Referring to the table below, add 30 µL of the Amplification Reaction Mix to the 0.2 mL tube containing the sample.

Reagent	Volume per Sample
Beads with captured DNA (Step 11)	20 μL
2X HotStart Mix	25 μL
P5 primer	2.5 µL
P7 primer	2.5 µL
	Total Volume 50 µL


12-3) Perform vortex and spin down.

12-4) Preset the following thermal cycler program and proceed with the Post-capture PCR run. (Lid temperature: 105°C)

		Temperature	Time	Cycles
Polymerase activation		98 °C	45 sec	1
Amplification	Denaturation	98 °C	15 sec	
	Annealing	60 °C	30 sec	11
	Extension	72 °C	30 sec	
Final extension		72 °C	60 sec	1
Hold		4 °C	Hold	Hold

Step 13. Purify post-capture PCR fragments

13-1) Add 75 µL (1.5X volume) of AMPure XP beads to the PCR reaction from (Step 12) and mix well by pipetting 10 time.

Step 14. Library QC

- 14-1) Measure the concentration with Qubit®4.0 Fluoromete rand check the size using TapeStation or Bioanalyzer.
- 14-2) After converting to molarity using the quantitative value measured by the Qubit 4.0 Fluorometer and the size of the TapeStation result, dilute to 4nM using Nuclease-Free Water.

Step 15. Sequencing

15-1) Please refer to the manufacturer's instructions and recommendations

